Los científicos toman instantáneas sin procesar de la conmutación ultrarrápida en un dispositivo electrónico cuántico

Los científicos toman instantáneas sin procesar de la conmutación ultrarrápida en un dispositivo electrónico cuántico
Un equipo de investigadores ha ideado una nueva forma de capturar los movimientos atómicos ultrarrápidos dentro de los diminutos interruptores que controlan el flujo de corriente en los circuitos electrónicos. En la foto aparecen Aditya Sood (izquierda) y Aaron Lindenberg (derecha). Crédito: Greg Stewart / SLAC National Accelerator Laboratory

Los circuitos electrónicos que calculan y almacenan información contienen millones de pequeños interruptores que controlan el flujo de corriente eléctrica. Una comprensión más profunda de cómo funcionan estos pequeños interruptores podría ayudar a los investigadores a superar los límites de la informática moderna.


Los científicos ahora han hecho las primeras instantáneas de los átomos que se mueven dentro de uno de esos interruptores cuando se enciende y apaga. Entre otras cosas, descubrieron un estado de corta duración dentro del conmutador que algún día podría aprovecharse para dispositivos informáticos más rápidos y con mayor eficiencia energética.

El equipo de investigación del Laboratorio Nacional Acelerador SLAC del Departamento de Energía, la Universidad de Stanford, los Laboratorios Hewlett Packard, la Universidad Estatal de Pensilvania y la Universidad de Purdue describen su trabajo en un artículo publicado en Ciencias Hoy.

«Esta investigación es un gran avance en tecnología y ciencia ultrarrápidas», dice el científico y colaborador de SLAC Xijie Wang. «Esta es la primera vez que los investigadores han utilizado la difracción de electrones ultrarrápida, que puede detectar movimientos atómicos diminutos en un material mediante la dispersión de un fuerte haz de electrones de una muestra, para observar un dispositivo electrónico en acción».

captura de sesión

Para este experimento, los interruptores electrónicos en miniatura diseñados a medida del equipo hechos de dióxido de vanadio, un material cuántico modelo cuya capacidad para cambiar entre estados aislantes y conductores eléctricos cerca de la temperatura ambiente podría aprovecharse como clave para la informática futura. El material también tiene aplicaciones en la computación inspirada en el cerebro debido a su capacidad para crear impulsos electrónicos que imitan los impulsos nerviosos disparados en el cerebro humano.

READ  Las restricciones de Covid pueden durar hasta 2022 'si se retrasa el 21 de junio'
El investigador principal Aditya Sood analiza una nueva investigación que podría conducir a una mejor comprensión de cómo funcionan los pequeños interruptores dentro de los circuitos electrónicos. Crédito: Olivier Bonin / SLAC National Accelerator Laboratory

Los investigadores utilizaron pulsos eléctricos para alternar estos interruptores entre el estado aislante y el estado conductor mientras tomaban instantáneas que mostraban pequeños cambios en la disposición de sus átomos durante una milmillonésima de segundo. Estas instantáneas, capturadas con la cámara de difracción de electrones ultrarrápida de SLAC, MeV-UED, se unieron para crear una película molecular de movimientos atómicos.

«Esta cámara ultrarrápida realmente puede mirar dentro de un material y tomar imágenes rápidas de cómo se mueven sus átomos en respuesta a un pulso agudo de excitación eléctrica», dijo el colaborador Aaron Lindenberg, investigador del Instituto Stanford de Ciencias de los Materiales y la Energía (SIMES) en SLAC. Es profesor en el Departamento de Ciencia e Ingeniería de Materiales de la Universidad de Stanford. «Al mismo tiempo, también mide cómo cambian las propiedades electrónicas de ese material con el tiempo».

Usando esta cámara, el equipo descubrió un nuevo estado intermedio dentro del material. Se crea cuando un material responde a un pulso eléctrico cambiando de un estado aislante a un estado conductor.

«Los estados aislantes y conductores tienen arreglos atómicos ligeramente diferentes, y generalmente se necesita energía para pasar de uno a otro», dijo el científico y colaborador de SLAC Xiaozhe Shen. “Pero cuando la transición se realiza a través de este estado intermedio, el Transformación Puede ocurrir sin ningún cambio en la disposición atómica.

Los científicos toman instantáneas sin procesar de la conmutación ultrarrápida en un dispositivo electrónico cuántico
El equipo usó pulsos eléctricos, que se muestran aquí en azul, para encender y apagar los interruptores bajo demanda varias veces. Programaron estos pulsos eléctricos para que llegaran antes que los pulsos de electrones producidos por la fuente de difracción de electrones ultrarrápida del SLAC MeV-UED, que capturó los movimientos atómicos que ocurren dentro de estos interruptores cuando se encienden y apagan. Crédito: Greg Stewart / SLAC National Accelerator Laboratory

Abriendo una ventana sobre el movimiento atómico

Aunque el estado intermedio está presente durante unas millonésimas de segundo, se estabiliza debido a las imperfecciones del material.

Para continuar con esta investigación, el equipo está estudiando cómo diseñar estos defectos en los materiales para hacer que este nuevo estado sea más estable y duradero. Esto les permitiría fabricar dispositivos en los que la conmutación electrónica podría ocurrir sin ningún movimiento atómico, lo que funcionaría más rápido y requeriría menos energía.

READ  Dieta para la artritis: tres de las mejores especias para evitar los síntomas de la artritis y el dolor en las articulaciones.

«Los resultados demuestran la solidez de la conmutación eléctrica durante millones de ciclos y definen los límites potenciales para las velocidades de conmutación de dichos dispositivos», dijo el colaborador Shriram Ramanathan, profesor de la Universidad de Purdue. “La investigación proporciona datos invaluables sobre los fenómenos microscópicos que ocurren durante Dispositivo operaciones, que es crucial para el diseño de futuros modelos de circuitos. «

La investigación también ofrece un nuevo método para sintetizar materiales que no se encuentran en condiciones naturales, lo que permite a los científicos monitorearlos en escalas de tiempo ultrarrápidas y luego ajustar sus propiedades.

«Este método nos brinda una nueva forma de ver los dispositivos en acción y abre una ventana para ver cómo se mueven los átomos», dijo el autor principal e investigador de SIMES, Aditya Sood. «Es emocionante reunir ideas de los campos tradicionalmente privilegiados de la ingeniería eléctrica y la ciencia ultrarrápida. Nuestro enfoque permitirá la creación de la próxima generación». dispositivos electrónicos Puede satisfacer las crecientes necesidades mundiales de computación inteligente con uso intensivo de datos «.


Una nueva forma de activar y desactivar propiedades exóticas en materiales topológicos

más información:
Dinámica de fase general en interruptores VO2 revelada por difracción operativa ultrarrápida. Ciencias (2021). science.sciencemag.org/cgi/doi… 1126 / science.abc0652

La frase: Los científicos toman instantáneas sin procesar de la conmutación ultrarrápida en un dispositivo electrónico cuántico (2021, 15 de julio). Recuperado el 15 de julio de 2021 de https://phys.org/news/2021-07-scientists-snapshots-ultrafast-quantum-electronic. html

Este documento está sujeto a derechos de autor. Sin perjuicio de cualquier trato justo con el propósito de estudio o investigación privada, ninguna parte puede ser reproducida sin permiso por escrito. El contenido se proporciona únicamente con fines informativos.

READ  Las últimas tasas de Covid-19 en el Gran Manchester: las cifras están aumentando en ocho distritos de la zona

Estaremos encantados de escuchar lo que piensas

Deje una respuesta

DEPORVE.COM.AR NIMMT AM ASSOCIATE-PROGRAMM VON AMAZON SERVICES LLC TEIL, EINEM PARTNER-WERBEPROGRAMM, DAS ENTWICKELT IST, UM DIE SITES MIT EINEM MITTEL ZU BIETEN WERBEGEBÜHREN IN UND IN VERBINDUNG MIT AMAZON.IT ZU VERDIENEN. AMAZON, DAS AMAZON-LOGO, AMAZONSUPPLY UND DAS AMAZONSUPPLY-LOGO SIND WARENZEICHEN VON AMAZON.IT, INC. ODER SEINE TOCHTERGESELLSCHAFTEN. ALS ASSOCIATE VON AMAZON VERDIENEN WIR PARTNERPROVISIONEN AUF BERECHTIGTE KÄUFE. DANKE, AMAZON, DASS SIE UNS HELFEN, UNSERE WEBSITEGEBÜHREN ZU BEZAHLEN! ALLE PRODUKTBILDER SIND EIGENTUM VON AMAZON.IT UND SEINEN VERKÄUFERN.
deporve.com.ar